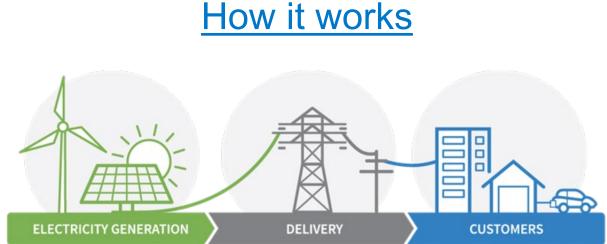


South San Francisco Building Reach Codes

Focus on Research Laboratories and other Nonresidential

September 1, 2021


Farhad Farahmand, Sr Project Manager, TRC on behalf of Peninsula Clean Energy

Peninsula Clean Energy

Peninsula Clean Energy is San Mateo County's not for profit locally-led electricity provider

Mission: To reduce greenhouse gas emissions by expanding access to sustainable and affordable energy solutions

Peninsula Clean Energy provides electricity from clean energy sources at lower rates than PG&E. **PG&E** owns the power lines and delivers the power we generate. They send a consolidated bill.

As a **customer** of Peninsula Clean Energy, you are helping the environment and saving money.

SSF City Council Policy Direction

• On May 26, 2021, Council adopted reach codes for NEW residential:

- Requiring all-electric appliances in buildings
- Higher standards for EV Charging stations
- Council asked staff to explore similar reach codes for non-residential
- Council wants to ensure businesses can learn about the benefits of reach codes and share feedback, concerns, or logistical issues that may exist for specific types of businesses

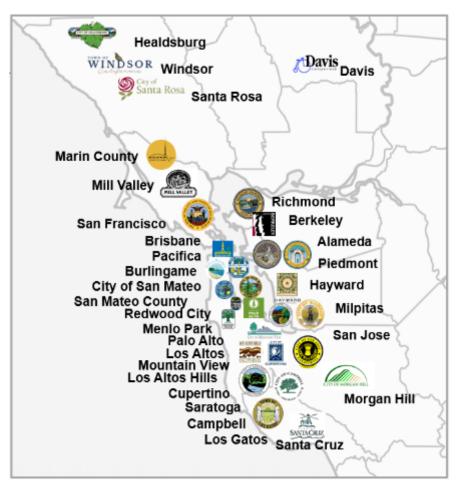
What are Reach Codes?

- Local enhancements to state code
- Can be adopted at any time
- Addresses:
 - 1. Building electrification reduced use of natural gas
 - 2. Electric vehicle (EV) charging increased EV readiness
- Improves economic and energy performance for <u>new</u> construction

Why Reach Codes?

Climate change is here:

- Increased wildfires
- More severe drought conditions
- Sea level rise/coastal erosion
- More intense storms
- Hotter temperatures



Adopting Cities & Approach

- 49 cities and counties statewide
- 13 in San Mateo County
- Most codes include:
 - All-electric with exceptions
 - Flexible exceptions based on local needs (e.g., commercial kitchens)
- Based on existing cost-effectiveness analyses: <u>https://localenergycodes.com/</u>

Nationally 50-60% of homes are already fully electric (American Community Survey)

Natural Gas Costs Climbing

CA residential natural gas prices increased 3x faster than electricity prices from 2012 to 2018

with no gas transition strategy **CA Residential Gas and Electricity Prices** Mixed-fuel bills* rise due to delivery costs Mixed-fuel home +4.6%/y ŝ 400 2M mixed fuel All-electric home Monthly utility bills (2018 homes in 2050 Gas Electricity 300 +1.4%/y 200 2012 = 10013M all-electric 100 homes in 2050 2012 2013 2014 2015 2016 2017 2018 2025 2045 2050 2020 2030 2035 2040 CEC Workshop June 6, 2019: Draft Results from E3

Source: EIA

https://www.eia.gov/dnav/ng/hist/n3010ca3m.htm https://www.eia.gov/electricity/data/browser/#/topic/7?agg=2,0,1&geo=g&freg=M Trend expected to accelerate:

study on the Future of Natural Gas Distribution in

High Building Electrification scenario

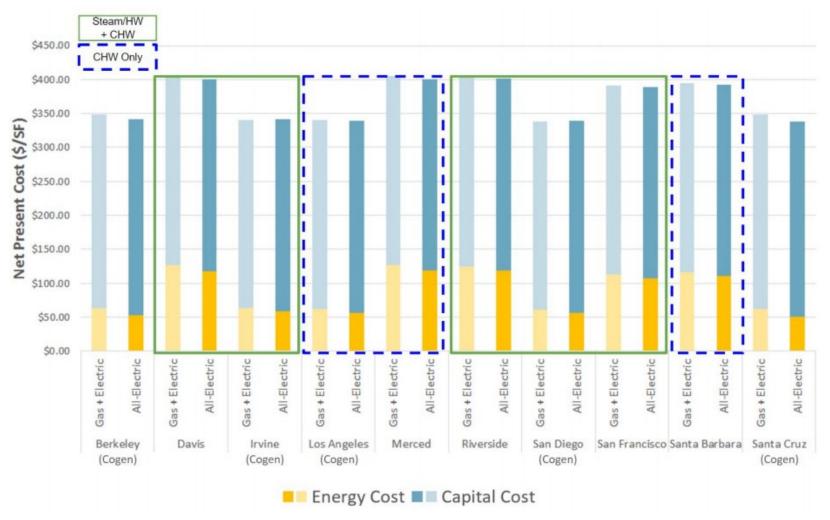
The <u>AB3232</u> Report represents the most current CEC research supporting that Aggressive Electrification is the primary pathway to meeting GHG reduction targets.

California

Focus on Research Laboratories

UC Cost Effectiveness Study – Lab HVAC Design

Table 5. Modeled HVAC Systems for Laboratory Buildings						
Laboratory Buildings						
System Type	Gas + Electric	All-Electric				
Campuses with Heating and Cooling Loop	- VAVRH System	- VAVRH System				
	- District Heating	- Water Source Heat Pump				
	- District Cooling	- District Cooling				
Campuses with Cooling Loop Only	- Boilers	- Water Source Heat Pump				
	- District Cooling	- District Cooling				
Notes	*UCB and UCSC are unique. UCB is modeled without loops. UCSC is modeled with a condenser water loop only.					


Notes:

- 1. Source: UC Carbon Neutral Buildings Cost Study (2017)
- 2. This study led to all-electric policy adoption for the entire UC system.
- 3. University of California has unique power generation and procurement profiles that may not be representative of private developers.

System Type	Acad	Lab	Res	Pros	Cons
Electric Resistance Heating	N/A	N/A	\$	Simple, common, inexpensive	Aesthetics, limited applicability
Ground Source Heat Pump	\$\$\$	\$\$\$	\$\$\$	Highly efficient, predictable performance, localized system that is mostly hidden	Requires trenches or bores, testing of soil conductivity, difficult to fix if ever damaged
Air Source Heat Pump	\$	\$	\$\$	Great efficiency, flexible installation locations, does not require additional source equipment	Sizes and system configurations not as numerous as boiler or chiller systems
Water Source Heat Pump connected to CW loop	\$\$	\$\$	\$\$	Same as Air Source but more efficient and predictable performance	Same as Air Source but requires condenser water and more hydronic piping and pumps
Air Source Variable Refrigerant Flow System	\$\$	\$\$	\$\$\$	Fully variable modern system growing in popularity, highly efficient at part and full load.	Use of refrigerants within the occupied space, lots of refrigerant piping in the space that must be installed with care and detail.
Ground or Water Source (CW) Variable Refrigerant Flow System	\$\$\$	\$\$\$	\$\$\$	Same as Air Source but more efficient and predictable performance.	Same as Air Source but requires condenser water and more hydronic piping and pumps
Heat Recovery Chiller	\$\$	\$\$	N/A	High Efficiency. Chilled and hot water from one piece of equipment.	Non traditional piece of equipment may require training, introduces HW temperature restraints
Central or local Water Cooled Chiller (with Cooling Tower)	\$\$\$	\$\$\$	\$\$\$	Chilled water plants are common and can be made to be very efficient.	Chilled water plants can also be operated inefficiently, require substantial infrastructure and site area.
Central or Local Air Cooled Chiller	\$\$	N/A	\$\$	Simple piece of equipment, comes in many sizes and configurations	Much less efficient than a water cooled chilled or a heat pump. Less efficient than a heat pump

Table 13. Evaluation of Different All-Electric HVAC Heating & Cooling Sources

UC Cost Effectiveness Study – Findings for Laboratories

UC Carbon Neutral Buildings Cost Study (2017)

https://www.ucop.edu/sustainability/_files/Carbon%20Neutral%20New%20Building%20Cost%20Study%20FinalRep ort.pdf

Examples of All-Electric Labs

Overview of Design Methods, by AEI

BUILDING SOLUTIONS

How all-electric design achieves energy efficiency

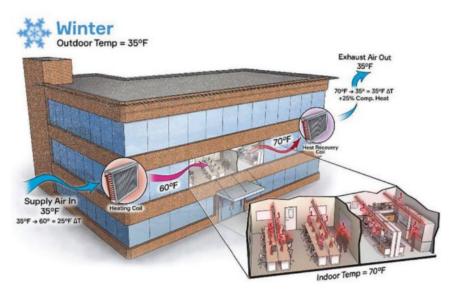


Figure 5: A heat recovery exhaust air coil is paired with a heat recovery chiller to fully electrify heating, efficiently extracting internal gains and heat used to condition ventilation air for reuse throughout the facility for heating demands. Courtesy: Affiliated Engineers

Affiliated Engineers outlined their approach for all-electric laboratory spaces in a journal article:

- Efficiency is crucial
 - High-performance envelope
 - Decoupled ventilation and space conditioning in office spaces
 - Auto sash closures on fume hoods
 - Variable-flow, wind-monitoring exhaust fans
- Exhaust air heat recovery, with the recovered heat going to the central heat pump (or heat recovery chiller).
- Balance supply water temp, efficiency, and storage size

CONSULTING-SPECIFYING ENGINEER (ISSN 0892-5046, Vol. 58, No. 5, GST #12339745. How all-electric design achieves energy efficiency. Affiliated Engineers. Available at: <u>https://bt.e-</u>

ditionsbyfry.com/publication/?m=27298&i=711040&p=26&ver=html5

Can the Grid Handle the Load Increase?

- AB3232 Analysis indicates that aggressive electrification will result 15 percent additional summer peak load by 2030. Winter load will match summer peak load.*
- "PG&E fully expects to meet the needs that all-electric buildings will require" -Robert S. Kenney, Vice President, PG&E
- CEC has noted electrification as the lower cost, lower risk approach to decarbonization
- The electricity suppliers have a service obligation to meet your needs

*Represents PG&E territory. Assumes all-electric for 100% new construction, 90% replace on burnout, and 70% early retirement.

Resources for Developers

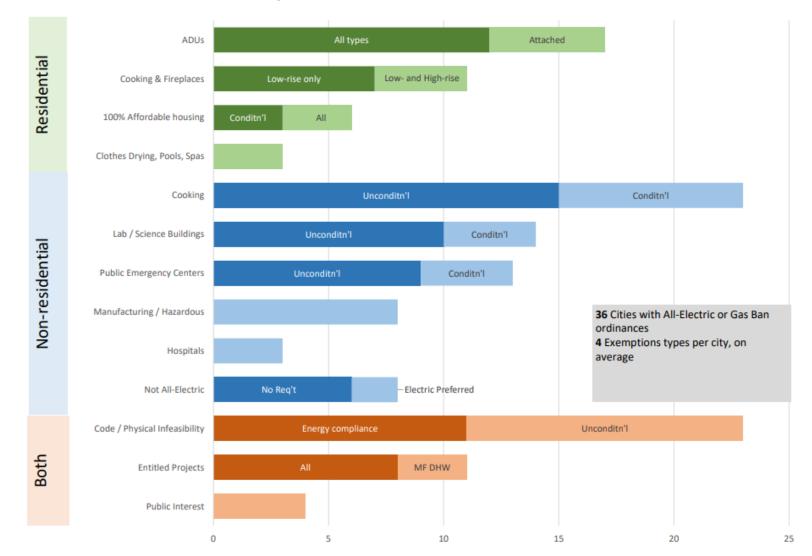
AllElectricDesign.org

- Free technical assistance to architects, builders, developers, design engineers, contractors, and energy consultants
- Portfolio of leading experts for every building type
- Technical roundtables
- Design guidelines
- In-depth 1-on-1 assistance

ECOTOPE

SMITHGROUP

Next Steps


Thank you! Please share your feedback.

Alex Greenwood: <u>Alex.Greenwood@ssf.net</u> Director, Economic & Community Development Department Direct (650) 829-6622

Online survey for feedback: <u>https://www.ssf.net/departments/economic-</u> community-development

All-Electric Ordinance Exemptions

Number of Exemptions in All-Electric Ordinances as of June 7, 2021

Peninsula Clean Energy

| 17

Electric Vehicle Code Options

Speed

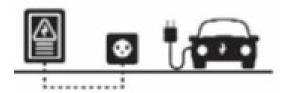
Level 1

3-4 miles per charging hour

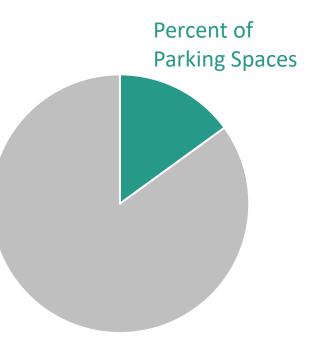
Readiness

EV Capable

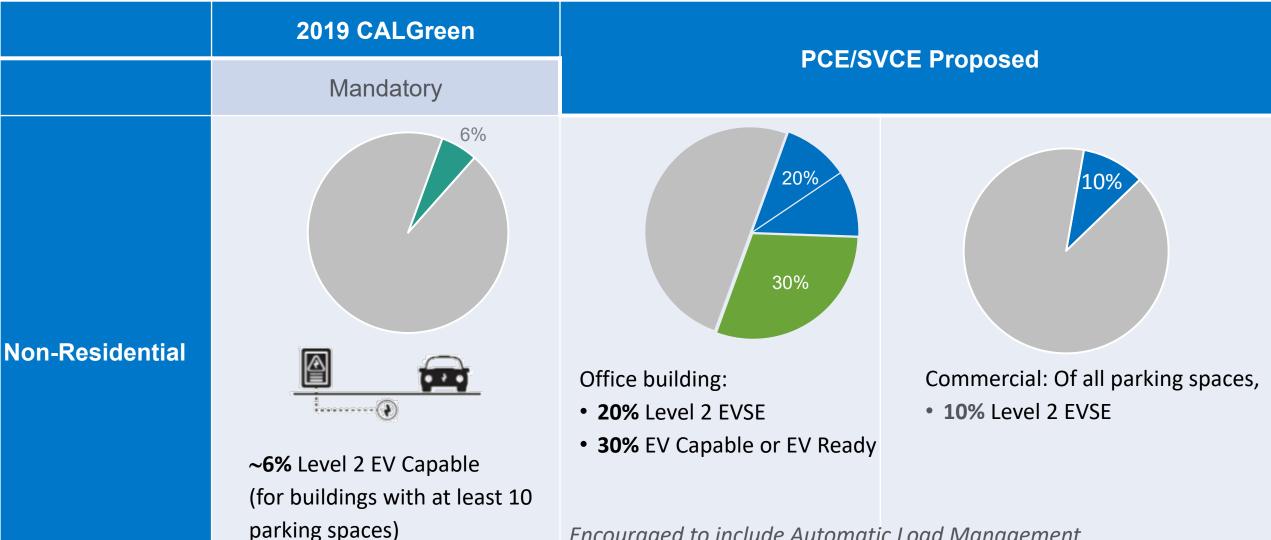
Level 2 10-20 miles per charging hour


Level 3 150+ miles per charging hour

Peninsula Clean Energy

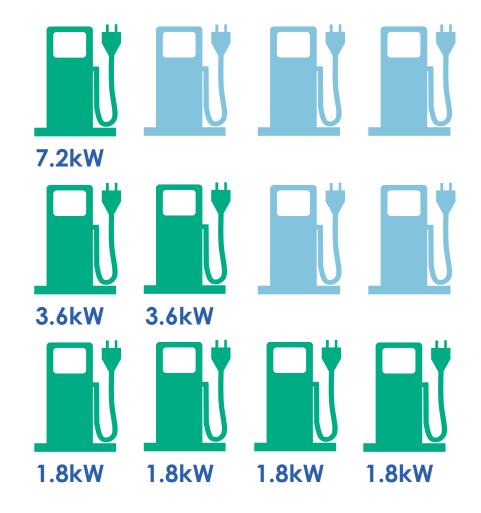

EV Ready

EV Charging Station



Number

Non-Residential, Office & Commercial – Peninsula Clean Energy Recommendation


ELECTRIC VEHICLE OUTLET

Encouraged to include Automatic Load Management >100 spaces: option for 80kW DC Fast Charger per 100 spaces

Automatic Load Management

- "A control system which allows multiple EV chargers or EV-Ready electric vehicle outlets to <u>share a circuit</u> or panel and <u>automatically</u> <u>reduce power</u> at each charger..."
- "Designed to deliver a minimum of 8-amperes and not less than 1.4-kiloWatts...
 to each EV space."

